"); //-->
对更高效人机界面 (HMI) 和更高感知能力的需求,正在推动触感器件在工业 4.0 应用、汽车、医疗和现场急救系统、物联网 (IoT) 设备、可穿戴设备及其他消费电子设备中的采用。例如,触感器件可以在基于 VR(虚拟现实)或 AR(增强现实)的医疗培训和患者康复系统中提供反馈,或者在方向盘上提供增强的警报,告知司机潜在的不安全状况。触感器件还与其他 HMI 技术(如声音)结合使用,以提供更具沉浸式效果和更真实的感官界面。
设计人员在使用触感器件时会面临一些挑战,包括:选择正确的触感技术(偏心旋转质量 (ERM) 或线性谐振致动器 (LRA)),正确地将其集成到系统中以达到所需的反馈水平,驱动触感器件,以及了解如何测试触感器件的振动、噪声性能和可靠性。
本文首先简要回顾触感反馈可以为几种应用场景带来的好处,然后介绍触感技术选项以及来自 PUI Audio 的真实触感器件示例。文中讨论了如何将触感器件集成到系统中,包括一个触感驱动器 IC 的示例,最后详细介绍了振动和噪声性能的测试方法。
多感官界面
触感器件正在越来越多地与视觉和听觉反馈结合使用,以创建多感官环境和增强的人机交互效果。触感界面可能包括衣服、手套、触摸屏和其他物体,如移动设备和电脑鼠标。
多感官交互尤其适合利用非视觉 HMI 元素(如触感或声音)让用户保持对手头任务的关注,例如远程控制机器、手术工具或驾驶汽车。将触感器件集成到 HMI 还能支持与虚拟环境或远程操控的远程系统实现增强的手动交互。为了获得将触感器件集成到 HMI 的最大好处,设计人员需要了解触感技术的性能权衡。
触感器件技术
最常见的触感技术包括 ERM 和 LRA。ERM 使用电机轴上的偏心质量来制造失衡并产生振动。ERM 器件使用相对简单的直流 (DC) 电压驱动。ERM 使用直流电,结合相对简单的机械设计,具有若干权衡:
优势:
· 驱动简单
· 成本低
· 外形尺寸灵活
· 对某些设计而言,系统集成更简单
劣势:
· 能耗高
· 反应速度慢
· 解决方案的尺寸较大
相反,LRA 器件没有使用偏心质量产生多轴振动,而是利用音圈、圆形磁铁和弹簧,以直线运动的方式产生振动。LRA 器件采用交流电 (AC) 驱动器为音圈供电。交流电在音圈中形成可变磁场,致使磁铁上下移动。弹簧将磁铁与器件外壳相连,将振动能量传递到系统。由于 LRA 器件以音圈为基础,不依赖 ERM 中使用的电刷,因而在给定的振动强度下功耗较少。以 180° 相移驱动 LRA 器件可以实现制动,从而加快响应速度。
LRA 器件在相对较窄的谐振频段(通常为 ±2 至 ±5 Hz)内高效运行。由于制造公差、元器件老化、环境条件和安装考量等诸多因素,LRA 器件的确切共振频率可能各有不同,导致驱动电路的设计异常复杂。与 ERM 器件相比,LRA 触感器件给设计人员带来了一系列优势和劣势:
优势:
· 响应速度更快
· 效率更高
· 加速度更快
· 可以制动
· 尺寸可能更小
劣势:
· 共振频率可能变化
· 驱动难度大
· 成本更高
除了操作上的差异外,ERM 和 LRA 器件还提供了多种封装样式。ERM 器件可采用硬币或条形封装,LRA 则采用硬币、棱形(矩形)或桶形封装(图 1)。硬币式 ERM 和 LRA 器件通常直径约 8 mm,厚度约 3 mm。条形 ERM 触感器件的尺寸较大,长约 12 mm,宽约 4 mm。
图 1:ERM 提供条形或硬币封装,LRA 则提供硬币、桶形或棱形格式。(图片来源:PUI Audio)
硬币式 ERM 器件
对可穿戴设备这类可以从硬币式 ERM 器件获益的应用而言,设计人员可以使用来自 PUI Audio 的直径 8 mm、厚度 3 mm 的 HD-EM0803-LW20-R。HD-EM0803-LW20-R 的规格包括:
· 额定转速每分钟 12,000 (±3,000) 转 (rpm)
· 端子电阻 38 Ω (±50%)
· 输入电压 3 V 直流
· 额定电流消耗 80 mA
· 工作温度范围 -20 至 +60 °C
对于需要在更具挑战性的热环境中工作的器件,设计人员可以改用 HD-EM1003-LW15-R,其额定工作温度为 -30°C 至 +70°C。它与 HD-EM0803-LW20-R 具有相同的额定转速和尺寸,其端子电阻为 46 Ω (±50%),额定电流消耗为 85 mA。这两种硬币式 ERM 器件都可以使用正、负直流电驱动,以实现顺时针或逆时针转动。它们包括 20 mm 的导线,可实现灵活的电气连接,并产生最大 50 dBA 的声学噪声。
*博客内容为网友个人发布,仅代表博主个人观点,如有侵权请联系工作人员删除。